3.120 \(\int \frac{1}{\sqrt{x} \sqrt{b \sqrt{x}+a x}} \, dx\)

Optimal. Leaf size=34 \[ \frac{4 \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{x}}{\sqrt{a x+b \sqrt{x}}}\right )}{\sqrt{a}} \]

[Out]

(4*ArcTanh[(Sqrt[a]*Sqrt[x])/Sqrt[b*Sqrt[x] + a*x]])/Sqrt[a]

________________________________________________________________________________________

Rubi [A]  time = 0.0490875, antiderivative size = 34, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {2013, 620, 206} \[ \frac{4 \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{x}}{\sqrt{a x+b \sqrt{x}}}\right )}{\sqrt{a}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[x]*Sqrt[b*Sqrt[x] + a*x]),x]

[Out]

(4*ArcTanh[(Sqrt[a]*Sqrt[x])/Sqrt[b*Sqrt[x] + a*x]])/Sqrt[a]

Rule 2013

Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[(a*x^Simplify[j/n]
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && IntegerQ[Simplify[j
/n]] && EqQ[Simplify[m - n + 1], 0]

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{x} \sqrt{b \sqrt{x}+a x}} \, dx &=2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{b x+a x^2}} \, dx,x,\sqrt{x}\right )\\ &=4 \operatorname{Subst}\left (\int \frac{1}{1-a x^2} \, dx,x,\frac{\sqrt{x}}{\sqrt{b \sqrt{x}+a x}}\right )\\ &=\frac{4 \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{x}}{\sqrt{b \sqrt{x}+a x}}\right )}{\sqrt{a}}\\ \end{align*}

Mathematica [A]  time = 0.0415114, size = 65, normalized size = 1.91 \[ \frac{4 \sqrt{b} \sqrt [4]{x} \sqrt{\frac{a \sqrt{x}}{b}+1} \sinh ^{-1}\left (\frac{\sqrt{a} \sqrt [4]{x}}{\sqrt{b}}\right )}{\sqrt{a} \sqrt{a x+b \sqrt{x}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[x]*Sqrt[b*Sqrt[x] + a*x]),x]

[Out]

(4*Sqrt[b]*Sqrt[1 + (a*Sqrt[x])/b]*x^(1/4)*ArcSinh[(Sqrt[a]*x^(1/4))/Sqrt[b]])/(Sqrt[a]*Sqrt[b*Sqrt[x] + a*x])

________________________________________________________________________________________

Maple [B]  time = 0.009, size = 133, normalized size = 3.9 \begin{align*}{\frac{1}{b}\sqrt{b\sqrt{x}+ax} \left ( 2\,\sqrt{b\sqrt{x}+ax}\sqrt{a}+b\ln \left ({\frac{1}{2} \left ( 2\,a\sqrt{x}+2\,\sqrt{b\sqrt{x}+ax}\sqrt{a}+b \right ){\frac{1}{\sqrt{a}}}} \right ) -2\,\sqrt{\sqrt{x} \left ( b+a\sqrt{x} \right ) }\sqrt{a}+b\ln \left ({\frac{1}{2} \left ( 2\,\sqrt{\sqrt{x} \left ( b+a\sqrt{x} \right ) }\sqrt{a}+2\,a\sqrt{x}+b \right ){\frac{1}{\sqrt{a}}}} \right ) \right ){\frac{1}{\sqrt{\sqrt{x} \left ( b+a\sqrt{x} \right ) }}}{\frac{1}{\sqrt{a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(1/2)/(b*x^(1/2)+a*x)^(1/2),x)

[Out]

(b*x^(1/2)+a*x)^(1/2)*(2*(b*x^(1/2)+a*x)^(1/2)*a^(1/2)+b*ln(1/2*(2*a*x^(1/2)+2*(b*x^(1/2)+a*x)^(1/2)*a^(1/2)+b
)/a^(1/2))-2*(x^(1/2)*(b+a*x^(1/2)))^(1/2)*a^(1/2)+b*ln(1/2*(2*(x^(1/2)*(b+a*x^(1/2)))^(1/2)*a^(1/2)+2*a*x^(1/
2)+b)/a^(1/2)))/(x^(1/2)*(b+a*x^(1/2)))^(1/2)/b/a^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a x + b \sqrt{x}} \sqrt{x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(b*x^(1/2)+a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a*x + b*sqrt(x))*sqrt(x)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(b*x^(1/2)+a*x)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{x} \sqrt{a x + b \sqrt{x}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(1/2)/(b*x**(1/2)+a*x)**(1/2),x)

[Out]

Integral(1/(sqrt(x)*sqrt(a*x + b*sqrt(x))), x)

________________________________________________________________________________________

Giac [A]  time = 1.29107, size = 50, normalized size = 1.47 \begin{align*} -\frac{2 \, \log \left ({\left | -2 \, \sqrt{a}{\left (\sqrt{a} \sqrt{x} - \sqrt{a x + b \sqrt{x}}\right )} - b \right |}\right )}{\sqrt{a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(b*x^(1/2)+a*x)^(1/2),x, algorithm="giac")

[Out]

-2*log(abs(-2*sqrt(a)*(sqrt(a)*sqrt(x) - sqrt(a*x + b*sqrt(x))) - b))/sqrt(a)